The PyroMark Q48 Autoprep uses proven real-time sequence-based Pyrosequencing technology for detection and quantification in genetic analyses and epigenetic methylation studies. The system can analyze up to 48 samples simultaneously. An easy-to-use, automated protocol prepares single-stranded DNA samples without manual interaction from the user. This protocol uses magnetic streptavidin-coated Sepharose beads (PyroMark Q48 Magnetic Beads), which bind to the biotinylated PCR strand. Annealing of sequencing primers can be automated for up to four different sequencing primers. If more sequencing primers are used, the primers can be manually added to the single-stranded DNA samples.
Steps of the Pyrosequencing reaction:
Step 1: A DNA segment is amplified, and the strand to serve as the Pyrosequencing template is biotinylated. After denaturation, the biotinylated single-stranded PCR amplicon is isolated and allowed to hybridize with a sequencing primer. The hybridized primer and single-stranded template are incubated with the enzymes DNA polymerase, ATP sulfurylase, luciferase and apyrase, as well as the substrates adenosine 5' phosphosulfate (APS) and luciferin (see figure "
Principle of Pyrosequencing – step 1").
Step 2: The first deoxribonucleotide triphosphate (dNTP) is added to the reaction. DNA polymerase catalyzes the addition of the dNTP to the squencing primer, if it is complementary to the base in the template strand. Each incorporation event is accompanied by release of pyrophosphate (PPi), in a quantity equimolar to the amount of incorporated nucleotide (see figure "
Principle of Pyrosequencing – step 2").
Step 3: ATP sulfurylase converts PPi to ATP in the presence of adenosine 5' phosphosulfate (APS). This ATP drives the luciferase-mediated conversion of luciferin to oxyluciferin that generates visible light in amounts that are proportional to the amount of ATP. The light produced in the luciferase-catalyzed reaction is detected by CCD sensors and seen as a peak in the raw data output (Pyrogram). The height of each peak (light signal) is proportional to the number of nucleotides incorporated (see figure "
Principle of Pyrosequencing – step 3").
Step 4: Apyrase, a nucleotide-degrading enzyme, continuously degrades unincorporated nucleotides and ATP. When degradation is complete, another nucleotide is added (see figure "
Principle of Pyrosequencing – step 4").
Step 5: Addition of dNTPs is performed sequentially. It should be noted that deoxyadenosine alpha-thio triphosphate (dATPαS) is used as a substitute for the natural deoxyadenosine triphosphate (dATP), since it is efficiently used by the DNA polymerase, but not recognized by the luciferase. As the process continues, the complementary DNA strand is elongated, and the nucleotide sequence is determined from the signal peaks in the Pyrogram trace (see figure "
Principle of Pyrosequencing – step 5").